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Abstract

The statistical models of the strength of thin ceramic substrates with surface defects under piston-on-3-ball loading

conditions are formulated using Batdorf�s statistical theory and Kirstein and Woolley�s moment equations. These

models possess the form of a Weibull distribution function, making it possible to process the piston-on-3-ball biaxial

flexural strength data using a Weibull treatment. During this study, it was noted that the thickness of the specimen had

no effect on the failure distribution. Therefore, it was deemed that a reasonable thickness of the specimen disk could be

selected for the piston-on-3-ball test in the case where the thickness is so small that the deflection of the center of the

specimen exceeds half of the thickness (this thickness would invalidate the strength evaluation equation specified in

ASTM F 394-78). The strengths of seven different compositions of 8YSZ with dopants were tested using the piston-on-3-

ball method. The results were then processed using the derived models. The failure distributions of the different thickness

groups of 8YSZ specimens were similar, verifying that the thickness, indeed, has no effect on the failure distribution.
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1. Introduction

Biaxial flexural strength tests have been widely accepted for evaluating the mechanical properties of thin

ceramic substrates. Many test configurations have been established, such as ring-on-ring, piston-on-ring,

ball-on-ring, piston-on-3-ball, and ball-on-3-ball (Watchman et al., 1972). Although the ball-on-ring con-

figuration was reported to be the ideal method among these loading configurations (Shetty et al., 1980; With

and Wagemans, 1989) to determine materials properties, and a number of advanced hydraulic loading fa-

cilities were developed (Gorham and Rickerby, 1975; Shetty et al., 1983; Chao and Shetty, 1991), the piston-

on-3-ball method was adopted by the American Society of Test and Materials as a standard test method

(ASTM F 394-78, 1995) for thin ceramic substrates. In spite of the fact that the stress under the piston is
practically nonuniform and difficult to model, this method has the advantages that three balls support the
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specimens, allowing the use of a slightly warped specimen, and no surface grinding or polishing is required,

in contrast to the ring-supported techniques. It is possible, therefore, to analyze the effects of processing

parameters on the surface of the specimen using the piston-on-3-ball method. This method is thus effective in

determining the relative strength of specimens where precise knowledge of the fracture stress is not necessary,
such as the situations of quality control in plants and laboratory benchmarking tests in new material de-

velopment.

Ceramic strength data are typically scattered over a wide range (compared to metal materials) and must

be processed statistically. The Weibull distribution has been widely used in processing ceramic strength data

in order to account for the wide scattering of such data. Weibull�s strength theory of brittle materials is a

pure statistical model. Previous research activities have mostly been focused on the application of the

Weibull distribution to interpret strength data on the basis of uniaxial loading conditions. There was no

existing mechanism-based analytical method for deducing the statistics of fracture under more general
stress states until Batdorf�s theory was published (Batdorf and Crose, 1974; Batdorf and Heinisch, 1978;

Batdorf and Chang, 1979; Batdorf and Sines, 1980). Physical models still need to be developed to properly

process the strength results obtained from biaxial stress loading tests.

A physics-based statistical model must consider two key factors that dominate brittle fracture under

multi-axial loading conditions––the statistical nature of fracture and the multi-axial stress state that causes

the fracture. The statistics of fracture under multi-axial stresses have been studied by Batdorf and his co-

workers (Batdorf and Crose, 1974; Batdorf and Heinisch, 1978; Batdorf and Chang, 1979; Batdorf and

Sines, 1980) and by Evans (1978). Although Batdorf and his co-workers and Evans proposed two different
theories for multi-axial fractures, Chao and Shetty (1990) proved that the theories were equivalent if the

same fracture criterion and flaw size distribution were used. Furthermore, they developed failure proba-

bility formulations based on Batdorf�s theory for the test configurations of uniaxial tension, three- and

four-point bending, and the ring-on-ring method (Chao and Shetty, 1991). Although the intrinsic nature of

multi-axial stress states near the crack tips was not accounted for, these models were an important ad-

vancement in the interpretation of the statistical nature of multi-axial brittle fractures.

The Weibull treatment of strength data is usually employed in the ASTM standard test methods for

uniaxial flexural strength of ceramic materials (ASTM C 1161-94, 1995; ASTM C 1211-92, 1995; ASTM C
1273-95a, 1995). However, there is no suitable model to interpret the results obtained by the ASTM

standard test method for the biaxial flexural strength of ceramic substrates (piston-on-3-ball method),

perhaps due to the lack of statistical models for this loading configuration. Although rigorous theoretical

proof does not exist, some researchers have heuristically fitted their piston-on-3-ball strength data with the

standard Weibull distribution function and used the Weibull modulus to compare the results obtained from

three- and four-point bending tests that had uniaxial stress states at the specimen surfaces (Cattell et al.,

2001). This use points out the need for an analytical statistical model for the piston-on-3-ball test con-

figuration so the statistics of the test data can be interpreted, analyzed, and applied properly.
In this paper, specific statistical models for the piston-on-3-ball method are formulated by following the

same procedure used by Chao and Shetty (1991), who developed statistical models for many other loading

conditions, such as uniaxial, three- and four-point bending, and ring-on-ring loading configurations. The

formulations are based on studies by two research groups: Batdorf and Crose (1974), who developed a

general statistical theory for the fracture of a brittle structure subjected to nonuniform multi-axial stresses,

and Kirstein and Woolley (1967), who developed equations that could be used for evaluating the moments

in the piston-on-3-ball loading configuration, which can then be used to derive formulations for evaluating

the stresses in the tensile surface. The stresses in the tensile surface are the key to the application of
Batdorf�s theory. The resultant specific statistical models for biaxial brittle fracture are applied to the

strength analysis of 8-mol% yttria stabilized zirconia (8YSZ) thin substrates under piston-on-3-ball loading

conditions. Since the specimens are tested at as-fired conditions, the fractures are considered to be initiated

at defects in the tensile surface where the most significant tensile stresses occur. By SEM examination of the
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fracture surfaces of the tested specimen, Selc�uk and Atkinson (2000) revealed that the fracture of 8YSZ thin

substrates under ring-on-ring loading conditions was also initiated at defects in the tensile surface. Here,

only statistical models with fractures caused by surface flaws are formulated. Multi-axial fractures initiated

at volume flaws can be modeled in the same manner.

2. Theories

Batdorf�s theory for multi-axial stress state loading conditions requires a fracture criterion for deter-

mining the solid angle, which is defined as the angle in the principal stress space enclosing all the nor-

mals to crack planes so that an effective stress, which is based on the stress state and crack orientation,

will satisfy the fracture criterion. In this section, the stress distribution on the tensile surface will be in-

troduced first. Then the stress distribution will be applied to a specific fracture criterion to obtain the solid

angle.

2.1. Stress evaluation

Bassali (1957) formulated the general solution to the problem of flexure of a thin circular elastic plate

supported at an arbitrary number of points, which may be located anywhere within the plate periphery, and

loaded perpendicular to the plate over a circular area lying anywhere within the boundary of the plate.
Kirstein and Woolley (1967) specified Bassali�s theory to provide solutions to the problem of symmetrical

bending of thin circular elastic plates on equally spaced point supports. With these solutions, the equations

for evaluating the stress state on the tensile surface of the specimen plate can be formulated. The contri-

bution of direct shear forces to the stress is ignored, which is justified by the fact that the thickness of the

plate is much less than the in-plane dimensions, such that the plate can be considered as a slender structure.

Some of the parameters are given in Fig. 1, and a schematic of the specimen plate and loading/supporting

conditions is shown in Fig. 2.

Y

X

i

r

c

a

b

Support points 

Loading region

Specimen boundary

θ

ϕ

Fig. 1. Parameters in the piston-on-3-ball configuration: a ¼ radius of the concentric support circle, b ¼ radius of the loaded area

(radius of the piston), c ¼ radius of the plate specimen, and ui ¼ h � 2pi=3 ði ¼ 1; 2; 3Þ.
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The in-plane stresses are conveniently expressed in a polar coordinate system with normalized radius q
(06 q6 1), which starts from the center of the specimen surface, and polar angle h which starts from the

positive X axis that passes through one of the supports (Fig. 1). By using Kirstein and Woolley�s equations
for bending and twisting moments, the in-plane stresses on the tensile surface due to the out-of-plane load P
can be derived as follows:

rrr ¼ P �ffrrðq; hÞ
6

h2
ð1Þ

rhh ¼ P �ffhhðq; hÞ
6

h2
ð2Þ

and

rrh ¼ P �ffrhðq; hÞ
6

h2
ð3Þ

where h is the thickness of the plate, q is the normalized polar radius coordinate ðr=cÞ, and �ffrrðq; hÞ,
�ffhhðq; hÞ, and �ffrhðq; hÞ are stress distribution functions that are independent of loading levels and plate

thickness and are expressed as follows:

�ffrrðq; hÞ ¼ � 1þ m
24pj

W þ 1� m
48pjq2

H

�ffhhðq; hÞ ¼ � 1þ m
24pj

W � 1� m
48pjq2

H

�ffrhðq; hÞ ¼
1� m
24pjq2

U

Fig. 2. Piston-on-3-ball experimental configuration.
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where j is defined as ð3þ mÞ=ðm � 1Þ, m is Poisson�s ratio, and W is defined as

W ¼ W þ 6j ln qþ 3jq2

q2
� 3j; q6 q

6j ln q; q > q

8<
:

with the first term defined as

W ¼
X3

i¼1

Wi �
6t2 1þ jq2

2� t2

� �

j þ 1
þ 3ð1þ t2Þ

Wi ¼ lnð1� 2qt cosui þ q2t2Þ � j lnðq2 � 2qt cosui þ t2Þ � ð1� t2Þð1� q2t2Þ
1� 2qt cosui þ q2t2

where q is defined as b=c, and t is defined as a=c. In addition, H is defined as

H ¼ H þ � 3jq4

q2
; q6 q

�6jq2 þ 3jq2; q > q

8<
:

with the first term defined as

H ¼
X3

i¼1

Hi þ 3ðj � 1Þðq2 � t2Þ

Hi ¼ ðj2 � 1Þ lnð1� 2qt cosui þ q2t2Þ þ ð1� q2t2Þ2 � 2t2ð1� q2Þ2

1� 2qt cosui þ q2t2
� ð1� q2Þð1� t2Þð1� q2t2Þ2

ð1� 2qt cosui þ q2t2Þ2

þ jðq2 � t2Þ2

q2 � 2qt cosui þ t2

U is defined as

U ¼
X3

i¼1

Ui

Ui ¼
qt sinuiðq2 � t2Þ

1� 2qt cosui þ q2t2
� qt sinuið1� q2Þð1� t2Þð1� q2t2Þ

ð1� 2qt cosui þ q2t2Þ2
� jqt sinuiðq2 � t2Þ

q2 � 2qt cosui þ t2

� ðj2 � 1Þ arctan qt sinui

1� qt cosui

The stress distributions expressed by Eqs. (1)–(3) have a singular point at the center of the plate where q
is equal to zero. By further analysis of stresses at this point (Kirstein and Woolley, 1967), it was concluded

that the tensile stresses reach their maximum values at the center of the surface,

rrr ¼ rhh ¼ rb ¼ P �ffc
6

h2
ð4Þ

and

rrh ¼ 0 ð5Þ
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where

�ffc ¼ �ð1þ mÞ
8p

2t2 1� q2

2t2

� �

j þ 1
þ 2 ln

q
t
� 1

2
664

3
775

As described by Eqs. (1)–(4), all the stresses are proportional to the piston load P and inversely pro-
portional to the square of the specimen thickness. However, each stress has its own distribution function,

independent of loading level, as described by �ffrrðq; hÞ, �ffhhðq; hÞ, and �ffrhðq; hÞ. Therefore, the stress distri-

butions can be normalized by the stresses at the center. The normalized stress distribution functions

frrðq; hÞ, fhhðq; hÞ, and frhðq; hÞ are independent of the piston load and the thickness of the specimen. In

terms of frrðq; hÞ, fhhðq; hÞ, and frhðq; hÞ, the stress distributions in the tensile surface of the plate can be

expressed as follows:

rrr ¼ rb

�ffrrðq; hÞ
�ffc

¼ rbfrrðq; hÞ ð6Þ

rhh ¼ rb

�ffhhðq; hÞ
�ffc

¼ rbfhhðq; hÞ ð7Þ

and

rrh ¼ rb

�ffrhðq; hÞ
�ffc

¼ rbfrhðq; hÞ ð8Þ

With the stress components rrr, rrh, and rhh known, the principal stresses at any point ðq; hÞ on the

tensile surface of the specimen can be calculated by

rr ¼
rrr þ rhh

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rrr � rhh

2

� �2

þ r2
rh

r
¼ rbfrðq; hÞ ð9Þ

and

rh ¼
rrr þ rhh

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rrr � rhh

2

� �2

þ r2
rh

r
¼ rbfhðq; hÞ ð10Þ

The stress state at an arbitrary point on the tensile surface serves as the base for developing a statistical

model to describe the fracture strength of brittle materials using Batdorf�s theory. In the following section,

the equations given above for evaluating the stresses on the tensile surface will be used together with

fracture criteria to develop statistical models for brittle fracture under piston-on-3-ball loading condition.

2.2. Statistical model

Batdorf and his co-workers developed a statistical theory for the fracture of brittle structures subjected

to nonuniform multi-axial stress state (Batdorf and Crose, 1974; Batdorf and Heinisch, 1978; Batdorf and

Chang, 1979; Batdorf and Sines, 1980). According to this theory, the cumulative probability distribution
(failure probability), Pf , of fracture due to surface defects is given by

Pf ¼ 1� exp

�
�

Z
A

Z rh

0

X
2p

dNðrcrÞ
drcr

drcr dA
�

ð11Þ

where rcr is, according to Batdorf�s definition, the remote critical normal stress that causes fracture when a
uniform uniaxial stress is applied normal to the plane of a crack; rh is the highest value that rcr can achieve;
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A is the tensile surface area; and X is the solid angle containing the normals to all orientations for which the

component of the applied stress normal to the crack plane is larger than rcr. In the case of a biaxial stress

state (Fig. 3),

X ¼ 4hcr ð12Þ
where hcr is the largest angle of the orientation of the crack associated with the critical stress rcr. All the
cracks associated with the critical stress rcr with orientation angles less than hcr will lead to fracture. NðrcrÞ
is the crack size distribution function on the tensile surface, which gives the density of cracks having a

critical stress less than or equal to rcr. Batdorf and coworkers proposed to represent NðrcrÞ by a Taylor

series. However, Chao and Shetty (1991) used a relatively simple form for the crack size distribution

function

NðrcrÞ ¼ �kkrm
cr ð13Þ

where �kk and m are the scale and shape parameters, respectively, in analogy to the Weibull parameters.

When Eq. (13) is used to describe the crack size distribution, the cumulative probability distribution has

the form

Pf ¼ 1� exp

�
�
Z
A

Z rh

0

4hcr

2p
�kkmrm�1

cr drcr dA
�
¼ 1� exp

�
� 2

p
�kkmrm

b IB

�
ð14Þ

where the scale factor IB is evaluated by

IB ¼ c2
Z 2p

0

Z 1

0

Z rh=rb

0

hcr

rcr

rb

� �m�1

d
rcr

rb

� �
qdqdh ð15Þ

Since the crack extension initiates exclusively on the tensile free surface, the fractures under biaxial

flexural stress conditions are considered to involve only mode I and mode II cracks. Chao and Shetty (1991)

considered two failure criteria to determine the solid angle. The first one was the critical normal stress

criterion, which considered failure to be determined solely by the mode I loading of a crack

KI ¼ KIC ð16Þ
where KI is the mode I stress intensity factor and KIC is the mode I fracture toughness of the material. The

second failure criterion was the noncoplanar strain release rate criterion

KI

KIC

� �
þ KII

CKIC

� �2

¼ 1 ð17Þ

where KII is the mode II stress intensity factor and C is a constant. This equation was originally suggested

by Palaniswamy and Knauss (1978) using the shear-sensitivity parameter C ¼
ffiffiffiffiffiffiffiffi
2=3

p
� 0:82. Singh and

Fig. 3. Critical angle for randomly oriented surface cracks in a biaxial stress state.
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Shetty (1989a) showed that C took values in the range of 1–2 for polycrystalline ceramics under combined

mode I and mode II loading conditions. The higher the value of C, the lower the shear sensitivity of the

material.

If the crack on the tensile surface is assumed to be in the shape of a half penny, the mode I and mode II
stress intensity factors for a half-penny surface crack subjected to general remote loading are as follows

(Kassir and Sih, 1966; Sih, 1984):

KI ¼
2MIrN

ffiffiffi
a

p
ffiffiffi
p

p ð18Þ

KII ¼
4MIIs

ffiffiffi
a

p
ffiffiffi
p

p
ð2� mÞ ð19Þ

where rN and s are normal and shear stresses, respectively, and MI and MII are free surface and stress

gradient correction factors. Since MI and MII are approximately equal to each other (Smith and Sorensen,

1975; Newman and Raju, 1981), the two fracture criteria, Eqs. (16) and (17), become

rN ¼ rcr ð20Þ

and

rN

rcr

þ 2s
Cð2� mÞrcr

� �2
¼ 1 ð21Þ

For a general biaxial stress state at an arbitrary location on the tensile surface, the normal stress rN and

shear stress s can be evaluated as

rN ¼ rr þ rh

2
� rr � rh

2
cosð2hÞ ð22Þ

and

s ¼ � rr � rh

2
sinð2hÞ ð23Þ

By substituting Eqs. (22) and (23) into the critical normal stress criterion, Eq. (20), and using Eqs. (9)

and (10), rcr=rb is found to be

rcr

rb

¼ ðfr þ fhÞ
2

� ðfr � fhÞ
2

cosð2hcrÞ ¼ fNðq; h; hcrÞ ð24Þ

Furthermore, by applying differentiation to Eq. (24), we obtain

d
rcr

rb

� �
¼ ðfr � fhÞ sinð2hcrÞdhcr ð25Þ

Therefore, by substituting Eqs. (24) and (25) into Eq. (15), the scale factor IB can be obtained as

IB ¼ c2
Z 2p

0

Z 1

0

Z p=2

0

hcr½fNHðfNÞ	m�1ðfr � fhÞ sinð2hcrÞqdhcr dqdh ð26Þ

where HðfNÞ is the Heaviside step function. The reason for employing the Heaviside step function is to

avoid counting the contribution from the compressive normal stresses, since the compressive stresses

normal to a crack will not cause fracture in brittle materials. An analysis using the finite element method or
Bassali�s theory shows that the maximum principle stresses are compressive in the vicinity of the three

support balls on the tensile surface. Therefore, fracture cannot occur there.
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The noncoplanar strain release rate criterion takes both the mode I and mode II loadings into con-

sideration, which is more proper for shear-sensitive materials. The scale factor for this criterion can be

obtained by substituting Eqs. (22) and (23) into Eq. (21) and using Eqs. (9) and (10). Therefore, rcr=rb and

its differentiation are found to be

rcr

rb

¼ F ðq; h; hcrÞ ¼
fN
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ð2� mÞ2f 2

N þ 4ðfr � fhÞ2 sin2ð2hcrÞ
q

2Cð2� mÞ ð27Þ

and

d
rcr

rb

� �
¼ oF ðq; h; hcrÞ

ohcr

dhcr

¼
8ðfr � fhÞ2 sinð2hcrÞ cosð2hcrÞ þ 2 rcr

rb

� �
C2ð2� mÞ2ðfr � fhÞ sinð2hcrÞ

C2ð2� mÞ2 4 rcr
rb

� �
� ðfr þ fhÞ þ ðfr � fhÞ cosð2hcrÞ

h i dhcr ð28Þ

In this case, the scale factor IB is obtained as

IB ¼ c2
Z 2p

0

Z 1

0

Z p=2

0

hcr½F HðfNÞ	m�1 oF
ohcr

qdhcr dqdh ð29Þ

Therefore, it has been proven by these formulae that the failure distribution of a thin ceramic substrate

with piston-on-3-ball loading conditions is in the form of a Weibull distribution function, as indicated by

Eq. (14). The scale factor IB is an important parameter in the probability distribution. Once the flaw size

distribution function in the tensile surface, NðrcrÞ, is determined, the smaller the scale factor IB, the smaller
the failure probability at a certain strength level. Therefore, the scale factor IB can be used as an indicator of

reliability. The studies of the sensitivity of the scale factor IB to Poisson�s ratio are shown in Figs. 4 and 5,

with a specimen geometry (a ¼ 12:7 mm, b ¼ 0:8 mm, and c ¼ 15:9 mm) recommended by ASTM F 394-78

and a shape parameter m ¼ 7:1. Fig. 4 shows that the noncoplanar strain energy release rate criterion is

safer to use than the critical normal stress criterion if the shear-sensitivity parameter C is chosen to be 0.82

0 0.1 0.2 0.3 0.4 0.5
Poisson's ration, ν

0

0.2

0.4

0.6

0.8

Critical normal stress criterion
Noncoplanar strain energy release rate criterion

I B

Fig. 4. Variation of the scale factor IB for different fracture criteria (C ¼ 0:82 for the noncoplanar strain energy release rate criterion).
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as recommended by Palaniswamy and Knauss (1978), especially for brittle materials with small Poisson�s
ratios. This is because the noncoplanar strain energy release rate criterion takes mode II loading into

account, in addition to the mode I loading.

Fig. 5 shows that the scale factor IB is dependent on the value of the shear-sensitivity parameter C. With

C increasing from 0.82 to 2, the scale factor, IB, increases. When checking the numerical values of these

data, it was observed that the critical normal stress criterion is equivalent to the noncoplanar strain energy

release rate criterion provided the value of C is 2, which is the upper limit proposed by Shetty and co-

workers (Shetty, 1987; Singh and Shetty, 1989a,b).

2.3. Discussion

With the cumulative probability distribution functions derived above, it has been proven that the

Weibull distribution may also be used to describe the biaxial flexural strength of ceramic thin substrates

under piston-on-3-ball loading conditions. As in the cases of three- and four-point bending experiments

(Wachtman, 1996), the strength data can be fitted to a Weibull distribution function to obtain the Weibull

parameters. In the case of piston-on-3-ball experiments, the Weibull shape parameter, m, and crack density

scale parameter, �kk, can be identified from a group of piston-on-3-ball test data. Eq. (13) shows that these

two parameters characterize the surface flaw population of the test material with associated specific ma-
terial processing parameters. Therefore, they provide a method to estimate the fracture distribution of the

same material with the same processing parameters, but with different geometry and loading conditions.

For example, we can estimate the strength of a bar with three- or four-point bending conditions using the

cumulative probability distribution formulations derived by Chao and Shetty (1991). Furthermore, with the

stress distribution of a structure analyzed using a finite element program, the cumulative probability dis-

tribution can be numerically calculated following the same procedure as that applied to derive the cu-

mulative probability distributions in this paper.

An important observation was made from the derivation of the cumulative probability distribution
formulae [see Eqs. (6)–(8)]. The thickness, h, of the specimen does not contribute anything to the final

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

C = 0.82
C = 1.0
C = 1.5
C = 2.0

Poisson's ratio, ν

I B

Fig. 5. Variation of scale factor IB with the noncoplanar strain energy release rate fracture criteria with different values of the shear-

sensitivity parameter C.
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results as it is cancelled in the process of derivation. This is because we assumed that the fracture resulted

from the surface defects. Changing the thickness does not change the surface crack distribution. Therefore,

it provides us with a flexible way to prepare specimens. It is known from fracture mechanics that the geo-

metry of the specimen has strong effects on the strength (Hoshide et al., 1998). Thus, in practice, the sizes of
the specimens must be designed as close as possible to the sizes of the real structures. Sometimes, the actual

structure must be designed to be very thin (<0.5 mm), making its use as a specimen for piston-on-3-ball

experiments impossible since such experiments require that the deflection of the specimen must be less than

half of the thickness of the specimen to obtain valid data. When surface defects are the main fracture

initiators, we can use test data from a group of reasonably thicker specimens to represent the fracture

distribution of the thin structure.

It should be pointed out that the employment of two failure criteria––the critical normal stress criterion

and the noncoplanar strain release rate criterion––to determine the solid angle is not sufficient to cover all
possible failure mechanisms. The critical normal stress criterion considers only the failure caused by mode I

loading on a crack. Although the noncoplanar strain release rate criterion takes the mode II loading into

account, it dismisses the effect of interaction between mode I and mode II loadings. To take the interactions

into account, a strain energy density criterion (Sih, 1974; Sih and Barthelemy, 1980) may be employed. In

the plane problem, a strain energy density factor is defined as

S ¼ a11K2
I þ 2a12KIKII þ a22K2

II ð30Þ

where aij ði; j ¼ 1; 2Þ are

a11 ¼
1

16G
ð3� 4m � cos hÞð1þ cos hÞ

a12 ¼
1

16G
2 sin h½cos h � ð1� 2mÞ	

a22 ¼
1

16G
½4ð1� mÞð1� cos hÞ þ ð1þ cos hÞð3 cos h � 1Þ	

with G being the shear modulus of elasticity.

The strain energy density criterion states that (1) the direction of crack propagation coincides with the

location of minimum strain energy density factor, Smin and (2) the crack extends when the minimum strain

energy density factor reaches a critical value SC. The necessary and sufficient conditions for S to be mini-

mum are

oS
oh

¼ 0 ð31Þ

and

o2S

oh2
> 0 for h ¼ h0 ð32Þ

with h0 corresponding to the direction of crack initiation, i.e., S ¼ Smin for h ¼ h0. The critical value of SC
was given by Sih (1974) as

SC ¼ ð1þ mÞð1� 2mÞK2
IC

2pE
ð33Þ

The employment of this strain energy density criterion in the determination the solid angle results in the

same form of distribution function––Weibull distribution. The difference is in the formulation for the scale

factor IB. It is more general to use this strain energy density criterion to predict the strength distribution.
However, the focus of this paper is to identify the form of strength distribution. IB is part of a parameter
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determined from experimental data, leaving the exact form of IB noncritical. Therefore, similar to the

approach used by Chao and Shetty (1991), only simpler forms of failure criteria are employed here.

3. Experiments

3.1. Specimen preparation

The specimens were made from TZ-8YSZ powder (TOSOH USA, Inc., Atlanta, GA). The powder was
mixed with dopants and was then processed into a slurry with dispersant, binder, and plasticizer, and the

slurry was tape-cast. Then, the specimens were laser-cut out of green sheets and sintered at 1450 �C for 3 h.

The surface roughness of as-fired specimens is between 20 and 30 lm as observed with a Zeiss IM 35

inverted microscope.

The geometry of the specimen is the one recommended by ASTM F 394-78: 32 mm in diameter and 0.76

mm in thickness. The specimen compositions studied in this research are listed in Table 1. In order to

integrate this study with the study of physical properties, such as electrical conductivity from another re-

search group (see Brach, 2000), the specimens prepared for this study are exactly the same as those speci-
mens used for the study of physical properties. An X-ray diffraction (XRD) analysis performed on the

materials revealed that only the cubic phase was present in all these specimens (Brach, 2000).

Table 1

Composition of specimens

Composition Alias

Pure 8YSZ 8YSZ

1 mol% Al2O3-doped 8YSZ 1A

2 mol% Al2O3-doped 8YSZ 2A

3 mol% Al2O3-doped 8YSZ 3A

10 wt% 3YSZ-doped 8YSZ 1Y

20 wt% 3YSZ-doped 8YSZ 2Y

30 wt% 3YSZ-doped 8YSZ 3Y
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Fig. 6. A typical loading trace of the piston-on-3-ball experiment.
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The surface condition of the specimens was made as close as possible to that to be used in service since

the intention is to obtain realistic strength data for design. Therefore, the specimens used in this research

had as-fired surface finishes. At this surface condition, the test results included all the factors that had

effects on the biaxial flexural strength, such as material compositions and processing parameters, in ad-
dition to surface flaws.

3.2. Experimental procedure

In the piston-on-3-ball experimental method, a thin ceramic substrate is placed on three balls sitting 120�
apart on a 25.4-mm-diameter circle (ASTM F 394-78, 1995). A piston pushes on the center of the circle

from the other side of the ceramic sheet, thus producing a biaxial flexural loading condition, as shown in

Table 2

Biaxial flexural strength data (MPa) from experiments

8YSZ

(h ¼ 0:76 mm)

8YSZ

(h ¼ 0:41 mm)

1A 2A 3A 1Y 2Y 3Y

348.5 375.2 353.2 317.8 333.9 301.8 321.1 267.4

355.7 360.1 344.1 318.9 336.6 182.7 339.3 357.5

285.8 469.8 397.1 260.7 254.0 245.3 335.2 362.1

306.6 344.0 336.1 285.7 402.6 326.1 292.0 284.6

280.1 387.4 219.4 299.6 320.8 307.4 267.8 351.6

296.3 318.2 268.4 276.7 349.9 250.9 368.2 406.0

256.7 451.0 382.2 249.5 251.8 375.3 324.6

346.4 327.3 313.5 301.9 233.2 262.0 330.6

335.4 336.5 290.2 309.0 245.8 346.0 411.2

333.3 236.0 330.1 349.7 212.1 314.3 330.4

330.3 387.5 306.0 290.8 257.3 301.0

337.1 248.3 296.9 208.0 308.7 245.1

273.5 273.4 346.9 243.6 232.9 306.7

302.7 437.6 271.9 230.9 194.9 277.4

321.2 286.7 210.2 290.4 309.9

355.0 357.7 288.8

249.2 378.2 271.3

283.9 292.3

337.5 293.6

303.9 185.3

382.6 301.3

381.2 302.7

280.3 267.9

356.2 319.2

179.6 284.6

363.5 265.0

393.2 271.5

339.1 95.4

274.1 159.9

297.4 172.9

388.9 367.6

218.2 263.8

210.9

275.3

299.4
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Fig. 2. The experiments were performed using a hydraulically driven material testing system (MTS 810)

with a piston moving speed of less than 1.27 lm/s.

The experiments were performed at room temperature. The outputs of piston loading forces and

specimen central deflection signals from the MTS 810 controller were recorded simultaneously using a
National Instrument PCI-MIO-16XE-50 multifunction DAQ board that was installed in a personal

computer. A data-acquisition control program was developed using LabVIEW 6i. Then, MATLAB 5.1 was

used to process the original data. The statistics toolbox of MATLAB was used to do the Weibull analysis.

3.3. Experimental results

A typical loading trace is shown in Fig. 6, which shows that the load increases linearly with deflection

until failure, indicating a brittle failure at the peak load. The linearity of load with deflection is consistent

with the analytical results derived by Kirstein et al. (1966).

The strength data were evaluated by the peak load using the equation for the stress at the center of the

tensile surface, Eq. (4). Table 2 lists the strength data obtained from the piston-on-3-ball experiments.
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Fig. 7. Weibull probability plots of the biaxial flexural strengths from the piston-on-3-ball experiments.
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Then, the data were fitted to the Weibull cumulative probability distribution function using the method of

maximum likelihood (Jayatilaka, 1979),

Pf ¼ 1� exp

�
� a

rb

rbm

� �m�
ð34Þ

where a is a scale factor, rb is the fracture stress, and rbm is the mean of the fracture stress data. Then, the

scale factor of the crack size distribution function [see Eq. (13)] is

�kk ¼ p
2

1

mIB

a
rm
bm

ð35Þ

The data are shown as linearized Weibull plots in Fig. 7, and the associated Weibull parameters are listed in

Table 3.

In order to verify that the thickness of the specimen does not contribute to the final cumulative prob-

ability distribution form, another group of 8YSZ specimens with different thickness was tested. The results

are shown in Fig. 8 and listed in Table 4. The 95% confidence intervals of the Weibull parameters from

Table 3

Weibull parameters fitted from experimental results and biaxial flexural strengths

Ceramic alias Weibull parameters Strength (MPa)

m a Mean S.D.

8YSZ 7.44 (5.24, 9.65)a 0.62 (0.40, 0.84) 310.8 51.1

1A 8.36 (4.51, 12.21) 0.61 (0.31, 0.92) 322.3 46.9

2A 7.93 (4.30, 11.56) 0.62 (0.30, 0.93) 276.9 41.9

3A 8.69 (2.13, 15.25) 0.62 (0.14, 1.10) 333.0 48.0

1Y 5.68 (4.37, 7.00) 0.64 (0.40, 0.87) 257.6 56.5

2Y 10.04 (4.48, 15.60) 0.61 (0.29, 0.92) 317.4 37.7

3Y 8.81 (2.69, 14.92) 0.62 (0.24, 1.00) 342.6 46.0

a Inside the brackets is the 95% confidence interval.
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Fig. 8. Weibull probability plots for 8YSZ specimens with different thickness.
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these two group tests overlap and their mean strengths are approximately the same. These test results verify
the validity of the new model for biaxial flexural strength under piston-on-3-ball loading conditions

developed in this study.

4. Conclusions

Failure probability distribution function formulae for piston-on-3-ball loading conditions have been

derived following Chao and Shetty�s (1991) procedure for surface defects and using Batdorf�s theory for
biaxial flexural bending statistical model (Batdorf and Crose, 1974; Batdorf and Heinisch, 1978; Batdorf

and Chang, 1979; Batdorf and Sines, 1980), and Bassali�s (1957) theory for the evaluation of biaxial flexural

bending stresses. The final formulae are in a form of the Weibull cumulative probability distribution

function. Therefore, the experimental data from piston-on-3-ball tests can be processed with the Weibull

treatment. The Weibull parameters are proven to be the characteristics of the population of surface defects.

Therefore, these Weibull parameters can be used to predict the failure behavior of the tested material under

other loading conditions.

Seven different compositions of 8YSZ with dopants were tested using the piston-on-3-ball method. The
experimental results were processed using the Weibull treatment. The experimental data of 8YSZ with

different thickness verify the fact that the thickness of the specimen does not have an effect on the failure

probability distribution, which is derived from the statistical models. This fact indicates that the fracture of

the 8YSZ substrates is indeed a result of surface defects.
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