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Abstract

The statistical models of the strength of thin ceramic substrates with surface defects under piston-on-3-ball loading
conditions are formulated using Batdorf’s statistical theory and Kirstein and Woolley’s moment equations. These
models possess the form of a Weibull distribution function, making it possible to process the piston-on-3-ball biaxial
flexural strength data using a Weibull treatment. During this study, it was noted that the thickness of the specimen had
no effect on the failure distribution. Therefore, it was deemed that a reasonable thickness of the specimen disk could be
selected for the piston-on-3-ball test in the case where the thickness is so small that the deflection of the center of the
specimen exceeds half of the thickness (this thickness would invalidate the strength evaluation equation specified in
ASTM F 394-78). The strengths of seven different compositions of 8YSZ with dopants were tested using the piston-on-3-
ball method. The results were then processed using the derived models. The failure distributions of the different thickness
groups of 8YSZ specimens were similar, verifying that the thickness, indeed, has no effect on the failure distribution.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Biaxial flexural strength tests have been widely accepted for evaluating the mechanical properties of thin
ceramic substrates. Many test configurations have been established, such as ring-on-ring, piston-on-ring,
ball-on-ring, piston-on-3-ball, and ball-on-3-ball (Watchman et al., 1972). Although the ball-on-ring con-
figuration was reported to be the ideal method among these loading configurations (Shetty et al., 1980; With
and Wagemans, 1989) to determine materials properties, and a number of advanced hydraulic loading fa-
cilities were developed (Gorham and Rickerby, 1975; Shetty et al., 1983; Chao and Shetty, 1991), the piston-
on-3-ball method was adopted by the American Society of Test and Materials as a standard test method
(ASTM F 394-78, 1995) for thin ceramic substrates. In spite of the fact that the stress under the piston is
practically nonuniform and difficult to model, this method has the advantages that three balls support the
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specimens, allowing the use of a slightly warped specimen, and no surface grinding or polishing is required,
in contrast to the ring-supported techniques. It is possible, therefore, to analyze the effects of processing
parameters on the surface of the specimen using the piston-on-3-ball method. This method is thus effective in
determining the relative strength of specimens where precise knowledge of the fracture stress is not necessary,
such as the situations of quality control in plants and laboratory benchmarking tests in new material de-
velopment.

Ceramic strength data are typically scattered over a wide range (compared to metal materials) and must
be processed statistically. The Weibull distribution has been widely used in processing ceramic strength data
in order to account for the wide scattering of such data. Weibull’s strength theory of brittle materials is a
pure statistical model. Previous research activities have mostly been focused on the application of the
Weibull distribution to interpret strength data on the basis of uniaxial loading conditions. There was no
existing mechanism-based analytical method for deducing the statistics of fracture under more general
stress states until Batdorf’s theory was published (Batdorf and Crose, 1974; Batdorf and Heinisch, 1978;
Batdorf and Chang, 1979; Batdorf and Sines, 1980). Physical models still need to be developed to properly
process the strength results obtained from biaxial stress loading tests.

A physics-based statistical model must consider two key factors that dominate brittle fracture under
multi-axial loading conditions—the statistical nature of fracture and the multi-axial stress state that causes
the fracture. The statistics of fracture under multi-axial stresses have been studied by Batdorf and his co-
workers (Batdorf and Crose, 1974; Batdorf and Heinisch, 1978; Batdorf and Chang, 1979; Batdorf and
Sines, 1980) and by Evans (1978). Although Batdorf and his co-workers and Evans proposed two different
theories for multi-axial fractures, Chao and Shetty (1990) proved that the theories were equivalent if the
same fracture criterion and flaw size distribution were used. Furthermore, they developed failure proba-
bility formulations based on Batdorf’s theory for the test configurations of uniaxial tension, three- and
four-point bending, and the ring-on-ring method (Chao and Shetty, 1991). Although the intrinsic nature of
multi-axial stress states near the crack tips was not accounted for, these models were an important ad-
vancement in the interpretation of the statistical nature of multi-axial brittle fractures.

The Weibull treatment of strength data is usually employed in the ASTM standard test methods for
uniaxial flexural strength of ceramic materials (ASTM C 1161-94, 1995; ASTM C 1211-92, 1995; ASTM C
1273-95a, 1995). However, there is no suitable model to interpret the results obtained by the ASTM
standard test method for the biaxial flexural strength of ceramic substrates (piston-on-3-ball method),
perhaps due to the lack of statistical models for this loading configuration. Although rigorous theoretical
proof does not exist, some researchers have heuristically fitted their piston-on-3-ball strength data with the
standard Weibull distribution function and used the Weibull modulus to compare the results obtained from
three- and four-point bending tests that had uniaxial stress states at the specimen surfaces (Cattell et al.,
2001). This use points out the need for an analytical statistical model for the piston-on-3-ball test con-
figuration so the statistics of the test data can be interpreted, analyzed, and applied properly.

In this paper, specific statistical models for the piston-on-3-ball method are formulated by following the
same procedure used by Chao and Shetty (1991), who developed statistical models for many other loading
conditions, such as uniaxial, three- and four-point bending, and ring-on-ring loading configurations. The
formulations are based on studies by two research groups: Batdorf and Crose (1974), who developed a
general statistical theory for the fracture of a brittle structure subjected to nonuniform multi-axial stresses,
and Kirstein and Woolley (1967), who developed equations that could be used for evaluating the moments
in the piston-on-3-ball loading configuration, which can then be used to derive formulations for evaluating
the stresses in the tensile surface. The stresses in the tensile surface are the key to the application of
Batdorf’s theory. The resultant specific statistical models for biaxial brittle fracture are applied to the
strength analysis of 8-mol% yttria stabilized zirconia (8YSZ) thin substrates under piston-on-3-ball loading
conditions. Since the specimens are tested at as-fired conditions, the fractures are considered to be initiated
at defects in the tensile surface where the most significant tensile stresses occur. By SEM examination of the
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fracture surfaces of the tested specimen, Sel¢uk and Atkinson (2000) revealed that the fracture of 8YSZ thin
substrates under ring-on-ring loading conditions was also initiated at defects in the tensile surface. Here,
only statistical models with fractures caused by surface flaws are formulated. Multi-axial fractures initiated
at volume flaws can be modeled in the same manner.

2. Theories

Batdorf’s theory for multi-axial stress state loading conditions requires a fracture criterion for deter-
mining the solid angle, which is defined as the angle in the principal stress space enclosing all the nor-
mals to crack planes so that an effective stress, which is based on the stress state and crack orientation,
will satisfy the fracture criterion. In this section, the stress distribution on the tensile surface will be in-
troduced first. Then the stress distribution will be applied to a specific fracture criterion to obtain the solid
angle.

2.1. Stress evaluation

Bassali (1957) formulated the general solution to the problem of flexure of a thin circular elastic plate
supported at an arbitrary number of points, which may be located anywhere within the plate periphery, and
loaded perpendicular to the plate over a circular area lying anywhere within the boundary of the plate.
Kirstein and Woolley (1967) specified Bassali’s theory to provide solutions to the problem of symmetrical
bending of thin circular elastic plates on equally spaced point supports. With these solutions, the equations
for evaluating the stress state on the tensile surface of the specimen plate can be formulated. The contri-
bution of direct shear forces to the stress is ignored, which is justified by the fact that the thickness of the
plate is much less than the in-plane dimensions, such that the plate can be considered as a slender structure.
Some of the parameters are given in Fig. 1, and a schematic of the specimen plate and loading/supporting
conditions is shown in Fig. 2.

Support points Specimen boundary

Fig. 1. Parameters in the piston-on-3-ball configuration: a = radius of the concentric support circle, b = radius of the loaded area
(radius of the piston), ¢ = radius of the plate specimen, and ¢, = 0 — 2mi/3 (i = 1,2, 3).
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Load ﬂ

Piston

Thin specimen

Support

Fig. 2. Piston-on-3-ball experimental configuration.

The in-plane stresses are conveniently expressed in a polar coordinate system with normalized radius p
(0 < p< 1), which starts from the center of the specimen surface, and polar angle 6 which starts from the
positive X axis that passes through one of the supports (Fig. 1). By using Kirstein and Woolley’s equations
for bending and twisting moments, the in-plane stresses on the tensile surface due to the out-of-plane load P
can be derived as follows:

_ 6
O-rr:Pf‘rr(pve)ﬁ (1)
- 6
ao0 = Pfoo(p, H)ﬁ (2)
and
_ 6
09 = Pﬁo(ﬂ,@)ﬁ (3)

where / is the thickness of the plate, p is the normalized polar radius coordinate (r/c), and f(p,0),
Joo(p,0), and f,9(p,0) are stress distribution functions that are independent of loading levels and plate
thickness and are expressed as follows:
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where « is defined as (3 +v)/(v — 1), v is Poisson’s ratio, and ¥ is defined as
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with the first term defined as
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where ¢ is defined as b/c, and ¢ is defined as a/c. In addition, @ is defined as
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The stress distributions expressed by Egs. (1)-(3) have a singular point at the center of the plate where p
is equal to zero. By further analysis of stresses at this point (Kirstein and Woolley, 1967), it was concluded
that the tensile stresses reach their maximum values at the center of the surface,

-6
O = 0gg = Op = Pfcﬁ
and

GrH:O

)
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where
2 7
2081 — ==
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As described by Egs. (1)—(4), all the stresses are proportional to the piston load P and inversely pro-
portional to the square of the specimen thickness. However, each stress has its own distribution function,
independent of loading level, as described by f,,(p, 0), fu(p,0), and f,4(p, 0). Therefore, the stress distri-
butions can be normalized by the stresses at the center. The normalized stress distribution functions
fr(p,0), foo(p,0), and f,9(p,0) are independent of the piston load and the thickness of the specimen. In
terms of f£,,.(p,0), foe(p,0), and f,4(p,0), the stress distributions in the tensile surface of the plate can be
expressed as follows:

r f‘”’(f/‘: ) - Gbﬁf(p7 9) (6)
oo = be = avfoo(p, 0) (7)

and
Or = Ubw = apfr(p,0) (8)

With the stress components o,,., 6,9, and g4 known, the principal stresses at any point (p, ) on the
tensile surface of the specimen can be calculated by

_(7;~r+660 Oy — 009 2 2 .
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and
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The stress state at an arbitrary point on the tensile surface serves as the base for developing a statistical
model to describe the fracture strength of brittle materials using Batdorf’s theory. In the following section,
the equations given above for evaluating the stresses on the tensile surface will be used together with
fracture criteria to develop statistical models for brittle fracture under piston-on-3-ball loading condition.

2.2. Statistical model

Batdorf and his co-workers developed a statistical theory for the fracture of brittle structures subjected
to nonuniform multi-axial stress state (Batdorf and Crose, 1974; Batdorf and Heinisch, 1978; Batdorf and
Chang, 1979; Batdorf and Sines, 1980). According to this theory, the cumulative probability distribution
(failure probability), P, of fracture due to surface defects is given by

on
P=1 —exp[ / / ;d]z:cr do. d4 (11)

where g, 1s, according to Batdorf’s definition, the remote critical normal stress that causes fracture when a
uniform uniaxial stress is applied normal to the plane of a crack; oy, is the highest value that o, can achieve;
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Fig. 3. Critical angle for randomly oriented surface cracks in a biaxial stress state.

A is the tensile surface area; and € is the solid angle containing the normals to all orientations for which the
component of the applied stress normal to the crack plane is larger than o.,. In the case of a biaxial stress
state (Fig. 3),

Q =40, (12)
where 0., is the largest angle of the orientation of the crack associated with the critical stress g.;. All the
cracks associated with the critical stress o., with orientation angles less than 6., will lead to fracture. N (o)
is the crack size distribution function on the tensile surface, which gives the density of cracks having a
critical stress less than or equal to o,.. Batdorf and coworkers proposed to represent N(ag.) by a Taylor
series. However, Chao and Shetty (1991) used a relatively simple form for the crack size distribution
function

N(oe) = ko™ (13)

where k and m are the scale and shape parameters, respectively, in analogy to the Weibull parameters.
When Eq. (13) is used to describe the crack size distribution, the cumulative probability distribution has
the form

Oh
Pr=1-—exp |:_/ / 4Zoikmagnrldo-crdA:| =1—exp <_ %kmgg]B) (14)
4 Jo T T

where the scale factor Iy is evaluated by

2n 1 Oh/ 01 m—1
IB:cz/ / / 0. 2)  d 2 ) pdpde (15)
0 o Jo Op Op

Since the crack extension initiates exclusively on the tensile free surface, the fractures under biaxial
flexural stress conditions are considered to involve only mode I and mode II cracks. Chao and Shetty (1991)
considered two failure criteria to determine the solid angle. The first one was the critical normal stress
criterion, which considered failure to be determined solely by the mode I loading of a crack

KI = KIC (16)

where K; is the mode I stress intensity factor and Kjc is the mode I fracture toughness of the material. The
second failure criterion was the noncoplanar strain release rate criterion

(K%) + <c11<<lllc>2 =1 (17)

where Kj; is the mode II stress intensity factor and C is a constant. This equation was originally suggested
by Palaniswamy and Knauss (1978) using the shear-sensitivity parameter C = /2/3 a 0.82. Singh and
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Shetty (1989a) showed that C took values in the range of 1-2 for polycrystalline ceramics under combined
mode I and mode II loading conditions. The higher the value of C, the lower the shear sensitivity of the
material.

If the crack on the tensile surface is assumed to be in the shape of a half penny, the mode I and mode II
stress intensity factors for a half-penny surface crack subjected to general remote loading are as follows
(Kassir and Sih, 1966; Sih, 1984):

K= ZMTW (18)
_ 4M][T\/a
K= ma— )

where oy and 7 are normal and shear stresses, respectively, and M; and My, are free surface and stress
gradient correction factors. Since M; and My are approximately equal to each other (Smith and Sorensen,
1975; Newman and Raju, 1981), the two fracture criteria, Eqs. (16) and (17), become

ON = O (20)
and

o 2t 2
N =
Ocr [C(Z — v)acj

For a general biaxial stress state at an arbitrary location on the tensile surface, the normal stress on and
shear stress t can be evaluated as

=1 (1)

oN = # - @ cos(20) (22)

and

0, — 0y
T=—

sin(26) (23)

By substituting Eqgs. (22) and (23) into the critical normal stress criterion, Eq. (20), and using Eqs. (9)
and (10), o./0y is found to be

ou _ (fr+1o) (i —So)

= 2 = £, 24
o 3 > COS( ecr) fN (p7 97 QCF) ( )
Furthermore, by applying differentiation to Eq. (24), we obtain
d(&) — (f, — /) sin(200) dOer (25)
Op

Therefore, by substituting Egs. (24) and (25) into Eq. (15), the scale factor /3 can be obtained as

2n 1 n/2
Iy = & / / / Ol H (A" (s — fo) $in(20)p dOcs dp 6 (26)
0 0 0

where H(fn) is the Heaviside step function. The reason for employing the Heaviside step function is to
avoid counting the contribution from the compressive normal stresses, since the compressive stresses
normal to a crack will not cause fracture in brittle materials. An analysis using the finite element method or
Bassali’s theory shows that the maximum principle stresses are compressive in the vicinity of the three
support balls on the tensile surface. Therefore, fracture cannot occur there.
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The noncoplanar strain release rate criterion takes both the mode I and mode II loadings into con-
sideration, which is more proper for shear-sensitive materials. The scale factor for this criterion can be
obtained by substituting Egs. (22) and (23) into Eq. (21) and using Eqgs. (9) and (10). Therefore, o.,/0, and
its differentiation are found to be

ch VR A — fo)’ sin’(20,)

O_cr
o (p,9 901 = 2C(27V) (27)
and
Ocr _ aF(pa 07 Hcr)
d(a—b> =G A
8(/. — fo) sin(204:) cos(20s) + 2(%)@( V2, — fo) sin(20)
- 0. (28)

22 —v) { (") (fr +fo) + (s — f())COS(chr)}

In this case, the scale factor /g is obtained as

/h/ / 0u[F H(fn)]" 0 0, dpdo (29)

Therefore, it has been proven by these formulae that the failure distribution of a thin ceramic substrate
with piston-on-3-ball loading conditions is in the form of a Weibull distribution function, as indicated by
Eq. (14). The scale factor Iz is an important parameter in the probability distribution. Once the flaw size
distribution function in the tensile surface, N(a.;), is determined, the smaller the scale factor /I, the smaller
the failure probability at a certain strength level. Therefore, the scale factor /g can be used as an indicator of
reliability. The studies of the sensitivity of the scale factor Iz to Poisson’s ratio are shown in Figs. 4 and 5,
with a specimen geometry (¢ = 12.7 mm, b = 0.8 mm, and ¢ = 15.9 mm) recommended by ASTM F 394-78
and a shape parameter m = 7.1. Fig. 4 shows that the noncoplanar strain energy release rate criterion is
safer to use than the critical normal stress criterion if the shear-sensitivity parameter C is chosen to be 0.82

0.8+
J
0.6-8
= 0.4
0.2
"| ——+—— Ciritical normal stress criterion
—=@— Noncoplanar strain energy release rate criterion
0 T T T T T
I I I I I
0 0.1 0.2 0.3 0.4 0.5

Poisson'sration, v

Fig. 4. Variation of the scale factor / for different fracture criteria (C = 0.82 for the noncoplanar strain energy release rate criterion).
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Fig. 5. Variation of scale factor /g with the noncoplanar strain energy release rate fracture criteria with different values of the shear-
sensitivity parameter C.

as recommended by Palaniswamy and Knauss (1978), especially for brittle materials with small Poisson’s
ratios. This is because the noncoplanar strain energy release rate criterion takes mode II loading into
account, in addition to the mode I loading.

Fig. 5 shows that the scale factor Iy is dependent on the value of the shear-sensitivity parameter C. With
C increasing from 0.82 to 2, the scale factor, Iy, increases. When checking the numerical values of these
data, it was observed that the critical normal stress criterion is equivalent to the noncoplanar strain energy
release rate criterion provided the value of C is 2, which is the upper limit proposed by Shetty and co-
workers (Shetty, 1987; Singh and Shetty, 1989a,b).

2.3. Discussion

With the cumulative probability distribution functions derived above, it has been proven that the
Weibull distribution may also be used to describe the biaxial flexural strength of ceramic thin substrates
under piston-on-3-ball loading conditions. As in the cases of three- and four-point bending experiments
(Wachtman, 1996), the strength data can be fitted to a Weibull distribution function to obtain the Weibull
parameters. In the case of piston-on-3-ball experiments, the Weibull shape parameter, m, and crack density
scale parameter, k, can be identified from a group of piston-on-3-ball test data. Eq. (13) shows that these
two parameters characterize the surface flaw population of the test material with associated specific ma-
terial processing parameters. Therefore, they provide a method to estimate the fracture distribution of the
same material with the same processing parameters, but with different geometry and loading conditions.
For example, we can estimate the strength of a bar with three- or four-point bending conditions using the
cumulative probability distribution formulations derived by Chao and Shetty (1991). Furthermore, with the
stress distribution of a structure analyzed using a finite element program, the cumulative probability dis-
tribution can be numerically calculated following the same procedure as that applied to derive the cu-
mulative probability distributions in this paper.

An important observation was made from the derivation of the cumulative probability distribution
formulae [see Egs. (6)—(8)]. The thickness, 4, of the specimen does not contribute anything to the final
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results as it is cancelled in the process of derivation. This is because we assumed that the fracture resulted
from the surface defects. Changing the thickness does not change the surface crack distribution. Therefore,
it provides us with a flexible way to prepare specimens. It is known from fracture mechanics that the geo-
metry of the specimen has strong effects on the strength (Hoshide et al., 1998). Thus, in practice, the sizes of
the specimens must be designed as close as possible to the sizes of the real structures. Sometimes, the actual
structure must be designed to be very thin (<0.5 mm), making its use as a specimen for piston-on-3-ball
experiments impossible since such experiments require that the deflection of the specimen must be less than
half of the thickness of the specimen to obtain valid data. When surface defects are the main fracture
initiators, we can use test data from a group of reasonably thicker specimens to represent the fracture
distribution of the thin structure.

It should be pointed out that the employment of two failure criteria—the critical normal stress criterion
and the noncoplanar strain release rate criterion—to determine the solid angle is not sufficient to cover all
possible failure mechanisms. The critical normal stress criterion considers only the failure caused by mode I
loading on a crack. Although the noncoplanar strain release rate criterion takes the mode II loading into
account, it dismisses the effect of interaction between mode I and mode II loadings. To take the interactions
into account, a strain energy density criterion (Sih, 1974; Sih and Barthelemy, 1980) may be employed. In
the plane problem, a strain energy density factor is defined as

S = a”KIZ + 2a1,K:Ky; + UlzzKIzI (30)
where a;; (i,j = 1,2) are
1
apy = @(3 —4v —cos 0)(1 + cos 0)
1 .
ap = mZSIH f[cos 6 — (1 — 2v)]
1
ay = @[4(1 —v)(1 —cosf) + (1 +cos0)(3cos —1)]

with G being the shear modulus of elasticity.

The strain energy density criterion states that (1) the direction of crack propagation coincides with the
location of minimum strain energy density factor, Sy, and (2) the crack extends when the minimum strain
energy density factor reaches a critical value Sc. The necessary and sufficient conditions for S to be mini-
mum are

oS

> 1

20" (31)
and

o%S

— >0 for 6 =0 32

o0 0 (32)

with 0 corresponding to the direction of crack initiation, i.e., S = Sy, for 0 = 6,. The critical value of S¢
was given by Sih (1974) as
(14+v)(1 - 2v)Ki-
2nE
The employment of this strain energy density criterion in the determination the solid angle results in the
same form of distribution function—Weibull distribution. The difference is in the formulation for the scale

factor /. It is more general to use this strain energy density criterion to predict the strength distribution.
However, the focus of this paper is to identify the form of strength distribution. Iy is part of a parameter

Sc = (33)
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determined from experimental data, leaving the exact form of /g noncritical. Therefore, similar to the
approach used by Chao and Shetty (1991), only simpler forms of failure criteria are employed here.

3. Experiments

3.1. Specimen preparation

The specimens were made from TZ-8YSZ powder (TOSOH USA, Inc., Atlanta, GA). The powder was
mixed with dopants and was then processed into a slurry with dispersant, binder, and plasticizer, and the
slurry was tape-cast. Then, the specimens were laser-cut out of green sheets and sintered at 1450 °C for 3 h.
The surface roughness of as-fired specimens is between 20 and 30 um as observed with a Zeiss IM 35

inverted microscope.

The geometry of the specimen is the one recommended by ASTM F 394-78: 32 mm in diameter and 0.76
mm in thickness. The specimen compositions studied in this research are listed in Table 1. In order to
integrate this study with the study of physical properties, such as electrical conductivity from another re-
search group (see Brach, 2000), the specimens prepared for this study are exactly the same as those speci-
mens used for the study of physical properties. An X-ray diffraction (XRD) analysis performed on the
materials revealed that only the cubic phase was present in all these specimens (Brach, 2000).

Table 1

Composition of specimens
Composition Alias
Pure 8YSZ 8YSZ
1 mol% Al,Os-doped 8YSZ 1A
2 mol% Al,0;-doped 8YSZ 2A
3 mol% Al,Os-doped 8YSZ 3A
10 wt% 3YSZ-doped 8YSZ 1Y
20 wt% 3YSZ-doped 8YSZ 2Y
30 wt% 3YSZ-doped 8YSZ 3Y

Pure 8YSZ

load (N)

—

deflection (mm)

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

. 6. A typical loading trace of the piston-on-3-ball experiment.
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The surface condition of the specimens was made as close as possible to that to be used in service since
the intention is to obtain realistic strength data for design. Therefore, the specimens used in this research
had as-fired surface finishes. At this surface condition, the test results included all the factors that had
effects on the biaxial flexural strength, such as material compositions and processing parameters, in ad-
dition to surface flaws.

3.2. Experimental procedure

In the piston-on-3-ball experimental method, a thin ceramic substrate is placed on three balls sitting 120°
apart on a 25.4-mm-diameter circle (ASTM F 394-78, 1995). A piston pushes on the center of the circle
from the other side of the ceramic sheet, thus producing a biaxial flexural loading condition, as shown in

Table 2

Biaxial flexural strength data (MPa) from experiments
8YSZ 8YSZ 1A 2A 3A 1Y 2Y 3Y
(h =0.76 mm) (h =0.41 mm)
348.5 375.2 353.2 317.8 3339 301.8 321.1 267.4
355.7 360.1 344.1 318.9 336.6 182.7 339.3 357.5
285.8 469.8 397.1 260.7 254.0 245.3 3352 362.1
306.6 344.0 336.1 285.7 402.6 326.1 292.0 284.6
280.1 387.4 2194 299.6 320.8 307.4 267.8 351.6
296.3 318.2 268.4 276.7 349.9 250.9 368.2 406.0
256.7 451.0 382.2 249.5 251.8 375.3 324.6
346.4 327.3 313.5 301.9 233.2 262.0 330.6
3354 336.5 290.2 309.0 245.8 346.0 411.2
3333 236.0 330.1 349.7 212.1 314.3 330.4
330.3 387.5 306.0 290.8 257.3 301.0
337.1 248.3 296.9 208.0 308.7 245.1
273.5 273.4 346.9 243.6 232.9 306.7
302.7 437.6 271.9 230.9 194.9 277.4
321.2 286.7 210.2 290.4 309.9
355.0 357.7 288.8
249.2 378.2 271.3
283.9 292.3
337.5 293.6
303.9 185.3
382.6 301.3
381.2 302.7
280.3 267.9
356.2 319.2
179.6 284.6
363.5 265.0
393.2 271.5
339.1 95.4
274.1 159.9
297.4 172.9
388.9 367.6
218.2 263.8
210.9
275.3

299.4
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Fig. 2. The experiments were performed using a hydraulically driven material testing system (MTS 810)
with a piston moving speed of less than 1.27 pm/s.

The experiments were performed at room temperature. The outputs of piston loading forces and
specimen central deflection signals from the MTS 810 controller were recorded simultaneously using a
National Instrument PCI-MIO-16XE-50 multifunction DAQ board that was installed in a personal
computer. A data-acquisition control program was developed using LabVIEW 6i. Then, MATLAB 5.1 was
used to process the original data. The statistics toolbox of MATLAB was used to do the Weibull analysis.

3.3. Experimental results

A typical loading trace is shown in Fig. 6, which shows that the load increases linearly with deflection
until failure, indicating a brittle failure at the peak load. The linearity of load with deflection is consistent
with the analytical results derived by Kirstein et al. (1966).

The strength data were evaluated by the peak load using the equation for the stress at the center of the
tensile surface, Eq. (4). Table 2 lists the strength data obtained from the piston-on-3-ball experiments.

8YSz 1A 2A 3A
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Fig. 7. Weibull probability plots of the biaxial flexural strengths from the piston-on-3-ball experiments.
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Then, the data were fitted to the Weibull cumulative probability distribution function using the method of
maximum likelihood (Jayatilaka, 1979),

szl—exp{—a(%ﬂ (34)

where o is a scale factor, oy, 1s the fracture stress, and oy, 1s the mean of the fracture stress data. Then, the
scale factor of the crack size distribution function [see Eq. (13)] is

- on 1l o«
h=- — — 35
2 mlg o, (35)

The data are shown as linearized Weibull plots in Fig. 7, and the associated Weibull parameters are listed in
Table 3.

In order to verify that the thickness of the specimen does not contribute to the final cumulative prob-
ability distribution form, another group of 8YSZ specimens with different thickness was tested. The results
are shown in Fig. 8 and listed in Table 4. The 95% confidence intervals of the Weibull parameters from

Table 3
Weibull parameters fitted from experimental results and biaxial flexural strengths

Ceramic alias Weibull parameters Strength (MPa)

m o Mean S.D.

8YSZ 7.44 (5.24, 9.65)* 0.62 (0.40, 0.84) 310.8 511
1A 8.36 (4.51, 12.21) 0.61 (0.31, 0.92) 322.3 46.9
2A 7.93 (4.30, 11.56) 0.62 (0.30, 0.93) 276.9 419
3A 8.69 (2.13, 15.25) 0.62 (0.14, 1.10) 333.0 48.0
8% 5.68 (4.37, 7.00) 0.64 (0.40, 0.87) 257.6 56.5
2Y 10.04 (4.48, 15.60) 0.61 (0.29, 0.92) 317.4 377
3Y 8.81 (2.69, 14.92) 0.62 (0.24, 1.00) 342.6 46.0

#Inside the brackets is the 95% confidence interval.

h =0.76 mm (+, solid line), h = 0.41 mm (o, dashed line)

0.96

0.90

0.75

£

o
o
o

o
N
o

Failure Probability

=
-
o

0.02

Fig. 8. Weibull probability plots for 8YSZ specimens with different thickness.
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;r’\?eki’EUﬁ parameters and biaxial flexural strength for 8YSZ with different specimen thickness
Thickness (mm) Weibull Parameters Strength (MPa)
m o Mean S.D.
0.76 7.44 (5.24, 9.65)* 0.62 (0.40, 0.84) 310.8 51.1
0.41 5.83 (2.62, 9.04) 0.64 (0.30, 0.98) 342.6 46.0

#Inside the brackets is the 95% confidence interval.

these two group tests overlap and their mean strengths are approximately the same. These test results verify
the validity of the new model for biaxial flexural strength under piston-on-3-ball loading conditions
developed in this study.

4. Conclusions

Failure probability distribution function formulae for piston-on-3-ball loading conditions have been
derived following Chao and Shetty’s (1991) procedure for surface defects and using Batdorf’s theory for
biaxial flexural bending statistical model (Batdorf and Crose, 1974; Batdorf and Heinisch, 1978; Batdorf
and Chang, 1979; Batdorf and Sines, 1980), and Bassali’s (1957) theory for the evaluation of biaxial flexural
bending stresses. The final formulae are in a form of the Weibull cumulative probability distribution
function. Therefore, the experimental data from piston-on-3-ball tests can be processed with the Weibull
treatment. The Weibull parameters are proven to be the characteristics of the population of surface defects.
Therefore, these Weibull parameters can be used to predict the failure behavior of the tested material under
other loading conditions.

Seven different compositions of 8YSZ with dopants were tested using the piston-on-3-ball method. The
experimental results were processed using the Weibull treatment. The experimental data of 8YSZ with
different thickness verify the fact that the thickness of the specimen does not have an effect on the failure
probability distribution, which is derived from the statistical models. This fact indicates that the fracture of
the 8YSZ substrates is indeed a result of surface defects.
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